Chk1 protects against chromatin bridges by constitutively phosphorylating BLM serine 502 to inhibit BLM degradation.
نویسندگان
چکیده
Chromatin bridges represent incompletely segregated chromosomal DNA connecting the anaphase poles and can result in chromosome breakage. The Bloom's syndrome protein helicase (BLM, also known as BLMH) suppresses formation of chromatin bridges. Here, we show that cells deficient in checkpoint kinase 1 (Chk1, also known as CHEK1) exhibit higher frequency of chromatin bridges and reduced BLM protein levels compared to controls. Chk1 inhibition leads to BLM ubiquitylation and proteasomal degradation during interphase. Furthermore, Chk1 constitutively phosphorylates human BLM at serine 502 (S502) and phosphorylated BLM localises to chromatin bridges. Mutation of S502 to a non-phosphorylatable alanine residue (BLM-S502A) reduces the stability of BLM, whereas expression of a phospho-mimicking BLM-S502D, in which S502 is mutated to aspartic acid, stabilises BLM and prevents chromatin bridges in Chk1-deficient cells. In addition, wild-type but not BLM-S502D associates with cullin 3, and cullin 3 depletion rescues BLM accumulation and localisation to chromatin bridges after Chk1 inhibition. We propose that Chk1 phosphorylates BLM-S502 to inhibit cullin-3-mediated BLM degradation during interphase. These results suggest that Chk1 prevents deleterious anaphase bridges by stabilising BLM.
منابع مشابه
Chk1-dependent constitutive phosphorylation of BLM helicase at serine 646 decreases after DNA damage.
BLM helicase, the protein mutated in Bloom syndrome, is involved in signal transduction cascades after DNA damage. BLM is phosphorylated on multiple residues by different kinases either after stress induction or during mitosis. Here, we have provided evidence that both Chk1 and Chk2 phosphorylated the NH(2)-terminal 660 amino acids of BLM. An internal region within the DExH motif of BLM negativ...
متن کاملChemoprotective effect of thymol against genotoxicity induced by bleomycin in human lymphocytes
Bleomycin (BLM) as an anti-cancer agent causes tissue toxicities through DNA damaging and cell deaths. The aim of this study was to investigate the effects of thymol against genotoxicity and anti-proliferation induced by BLM in normal human lymphocytes and ovarian cancer cells. Peripheral blood samples were collected from human volunteers and were incubated with thymol at different concentratio...
متن کاملBLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges.
Mutations in BLM cause Bloom's syndrome, a disorder associated with cancer predisposition and chromosomal instability. We investigated whether BLM plays a role in ensuring the faithful chromosome segregation in human cells. We show that BLM-defective cells display a higher frequency of anaphase bridges and lagging chromatin than do isogenic corrected derivatives that eptopically express the BLM...
متن کاملFunctional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest
Bloom's syndrome is a rare autosomal recessive genetic disorder characterized by chromosomal aberrations, genetic instability, and cancer predisposition, all of which may be the result of abnormal signal transduction during DNA damage recognition. Here, we show that BLM is an intermediate responder to stalled DNA replication forks. BLM colocalized and physically interacted with the DNA damage r...
متن کاملBLM SUMOylation regulates ssDNA accumulation at stalled replication forks
Polymerase stalling results in uncoupling of DNA polymerase and the replicative helicase, which generates single-stranded DNA (ssDNA). After stalling, RAD51 accumulates at stalled replication forks to stabilize the fork and to repair by homologous recombination (HR) double-strand breaks (DSBs) that accumulate there. We showed recently that SUMO modification of the BLM helicase is required in or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 127 Pt 18 شماره
صفحات -
تاریخ انتشار 2014